If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-550=0
a = 2; b = 3; c = -550;
Δ = b2-4ac
Δ = 32-4·2·(-550)
Δ = 4409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{4409}}{2*2}=\frac{-3-\sqrt{4409}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{4409}}{2*2}=\frac{-3+\sqrt{4409}}{4} $
| F(x)=2(4)^x | | v^2-4v=60 | | n^2+n-13200=0 | | 3/2y/5=19 | | -12+11(x+11)=5-6(3x+11) | | -14+12(x+8)=6-7(3x+9) | | 5(9t+3)=9(5-6t) | | (x-2)^2-41=8 | | -14+8(t+2)=6-9(1t+4) | | 3x=(x^2) | | 32x=2(4x)+(8x)+2(32) | | 36x=2(4x)+(8x)+2(36) | | 2I+8(3f)=2(6) | | (r-39)/5=9 | | 8(f+15)=-24 | | 6(y=3)30 | | 10=10(j-92) | | -6(d+71)=66 | | b/6-4=4 | | 3d-3=24 | | 19-4p=9p=-7 | | 2x-1/7x+2=3/5 | | 5x×15=75 | | 2x-1/7x+2=4/5 | | 8(3x–6)=96 | | x+11=-5x+16 | | -11x+12=1x=-1 | | 6z-18=8 | | 2x+1=12x+8 | | 7x23=-26 | | 2z-19=5z+12 | | 7y+5=19y=2 |